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The problem of beam transporting in a vacuum ranks high among the numerou s problems as- 
sociated with the use of powerful relativistic electron beams (REB) in physics experiments. 
Here it is analytically possible to consider only several of the simplest special cases; ~he 
majority of the situations require the use of numerical methods. The numerical procedures 
existing now are sufficiently effective for time-independent problems: they permit obtaining 
very high accuracy with totally acceptable expenditures of machine time [3-5]. Time-dependent 
problems are far more laborious and usually lle at the limit of possibilities of contemporary 
computational technique [6]. On ~he other hand, due to the comparatively short duration of 
powerful REB, ~ime dependence often proves to be fundamentally important for them; in general 
it is necessary to take into account, along with the time dependence of the particle motion, 
the effects of retardation for the electric and magnetic fields. Since the corresponding 
calculations are very cumbersome, it is advisable to consider as 6he first step a situation 
in which the particle trajectories possibly appear more simply. This occurs upon the motion 
of the beam in a strong external magnetic field, when one can treat the particles as "strung" 
onto the force lines. This is precisely the case whlch is discussed in this paper. We note 
that the indicated formulation of the problem is sufficiently realistic, since in many experi- 
mental setups a strong field is created which predetermines the appearance of the electron 
trajectories. 

i. The experimental scheme under discussion for transporting an REB is of the following 
form. The beam enters a cylindrical vacuum chamber through the anode foil, which is loca~ed 
at the end of the cylinder. Passing through the drift space, the beam. is incident on the 
other end, which is the collector. The chamber walls, the foil, and the collector are at 
zero potential. An external magnetic field is uniform in the direction along the chamber 
axis (it is understood that the ~ntire system possesses axial symmetry). 

We will represent the beam in the drift chamber in the form of a set of tubular beams, 
each of which has a negligibly small thickness and can be taken into account as a boundary 
condition in the solution of Maxwell's equations. By properly specifying the number of 
tubular beams, their currents, and their radii, one can actually model an arbitrary distribu- 
tion of injected current. For simpliclty's sake we will formulate the problem for the case 
in which only one current tube occurs in all. 

In cylindrical coordinates (r, z) =he drift space has a triangular form 0~. r~R, 
0~z~L. The current tube divides this region into two subregions: I (0 d r~ r b) and II 
(r b d r dR). 

In view of the axial symmetry of the problem, the system of Maxwell's equations is split 
into two independent systems (for TE- and TM-waves). The beam affects only the TM-waves in 
which the quantities E r, Ez, and H~ are different from zero: 
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It is necessary to supplement these formulas by matching the fields at r = r b (on the beam): 

I~ H~ 4~ �9 jrFII-- ~rPI = 4rig, H , f . -  =--c  ]" ( 1 . 4 )  

Here o(z, C) and J(z, t~ are the surface charge and current densities. The function E z is 
continuous at r = r b (EzI = E~), and its derivative with respect to the radius undergoes a 
discontinuity: 

o ~  ~ oE~ 4 ~ j  ~.  
or Or = ~ ~ + 4~ ~ .  ( 1 . 5 )  

We determine the variation of the charge density and current by proceeding from the equations 
of motion of the electrons: 

d (  ,%v ~ dz �9 ~ t | / ~  ) -- eE: (rb, z, t), = v. 

The total energy of the system W is comprised of the energy of the electromagnetic field 
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and the kinetic energy of the electrons 
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where Y = (I -- re/ca) -t/a. The variation of W is related solely to the fact that the elec- 
trons cross the boundaries of the region 0 <.~z ~L: 
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Equation (1.6) will be used in the following as a control on the computational accuracy. 

2. A scheme with overstepping is used for the numerical solution of Eqs. (1.1)-(1.3). 
For this purpose the functions Er, Ez, and H e are specified on grids shifted relative to each 
other. The values of the functions E r and He on the beam are determined from Maxwell's equa- 
tions with the boundary conditions (i.4) and (1.5) taken into account. The method of parti- 
cles in cells is used co solve the equations of motion. The surface charge and current 
density necessary in conditions (1.4) and (1.5) are determined from the positions and veloc- 
ities. The indicated algorithm is outlined in detail in [7]. 

The initial conditions were specified as follows in all the calculated versions. At the 
initial instant of time the functions Er, E z, and H, are equal to zero and there are no parti- 
cles in the drift space. Then at each time step an identical number of particles enters the 
drift space through the boundary z = 0 in order to provide a constant injected current. 

3. Systematic calculations were performed in order to check the accuracy of this algo- 
rithm. One of them was the following. The injected current is increased very slowly from 
zero to some value Io. The system arrived at a state differing little from the steady state 
which exists for a given value of the current. The parameters of the problem were as follows: 
Io= 0.031,, vo= 0.9c, r b = 0.4R, L = 5R, h r = hz = 0.1R, T = 0.01R/c, and 2000 particles. 
Here and later the current is measured in units of the critical vacuum current I, for a tubu- 
lar beam in an infinitely long system [8] 

where 7o = (i -- v~/ca) -~/a. The injected current increases linearly in a time t ~ 22R/c, and 
at the time c = 30R/c the deviation of all the quantities (I, v~ u) at the middle of the beam 
from the values of the steady solution did not exceed 0.05%. The deviation of the total energy 
from the values of the steady solution was 0.052% at this very same time. 

The accuracy was controlled in the computational process by checking fulfillment of the 
law of conservation of energy. For this purpose the energy We(t) which the system should have 
up to time t is calculated. It is calculated by integrating Eq. (1.6) over the time. On the 
other hand~ the energy can be calculated as the sum of the quantities WI and Wa (see Sec. I). 
The discrepancy between the energies calculated by these two methods is a measure of the com- 
putational accuracy. 



TABLE 1 

t(///c) 

5 
t0 
t5 
20 
25 

"~=0,05R/c 

6w=t,%% 
t,24 
i,26 
1,35 
t $4 

"c=0,025 R/c 

t,2i 
i,22 
t,24 
i ,24 
i,28 

l:=O,OtR/c 

1,21 
i,24 
1,24 
t,24 
i,25 

TABLE 2 

The calculations have shown that the accuracy increases when the steps are reduced. 
For example) in a calculation with I = 0.6I, (L = 5R, vo = 0.9c, T = 0.025R/c, and 2000 par- 
ticles) the relative deviation of the energy at time t = 10R/c 

w ( ~ ) - - w o ( o  
6W-- . ~  (t) ' 

where W(t) = W,(t) + Wa(t), is equal to ~W = 1.22% with h z = h r = 0.1R and ~W = 0.64% with 
h z = h r = 0.05R. 

The effect of the time step on the computational accuracy is shown in Table i, which is 
compiled from computational results having the very same parameters as in the preceding 
example (h z = h r = 0.1R). It is evident from Table i that the computationa ! accuracy remains 
approximately constant for different steps ~) i.e., it is determined by the spatial steps in 
this version. But the smaller the step T is) the longer this accuracy is preserved. 

4. Let us discuss the passage of a tubular current through a cylindrical chamber. 

Depending upon the value of the injected current) two modes of motion existed. With a 
small current the beam passed through the drift space experiencing together with the electro- 
magnetic field periodic oscillations about the average values. These oscillations amount to 
10-15% of the average values in size and are related to the fact that the injected current 
has a sharp leading edge. As a result of this injection) electromagnetic waves are excited 
in the chamber which do not die out with time. This mode was observed up to certain critical 
values. Since the chamber has a limited length, the value of the critical current is larger 
for it than that calculated from Eq. (3.1). The greater the difference, the shorter the 
chamber. Thus for L = 5R the critical current was larger than I, by 0.8%, and for L = R the 
critical current exceeded I, by a factor of 1.9 (in both cases r b = 0.4R, and vo = 0.9c). 

Starting from the critical current) the nature of the motion is altered. When the cur- 
rent exceeds I, by a small amount) the leading front of the beam passes through the drift 
space without particle reflection. Gradually) a charge is accumulated in the system) and 
part of the electrons start to be reflected starting from some time. As time passes, the 
point at which particle reflection occurs (the virtual cathode) is shifted towards the be- 
ginning of the chamber. The system arrives at a quasisteady state. The final position of 
the reflection point z depends upon the value of the injected current Io: the larger the cur- 
rent is, the nearer this point is located towards the front of the chamber (Table 2). 

With large injected currents particle reflection starts at earlier times. The nature 
of the motion remains the same. The position of the particles in the plane (z) p = yv/c) at 
times t = 2) 4) 6, 8, and i0 is given in Figs. 1 and 2; the lines parallel to the horizontal 
axis denote different velocities in units of the speed of light. The corresponding values of 
the velocity are indicated on the right. These calculations were done for an injected cur- 
rent I = 1.78I, (L = 5R, r b = 0.4R, vo = 0.9c)) and the time t is indicated in units of R/c. 
All the effects which we have spoken about above are readily visible on these graphs. The 
graphs in Fig. 2 differ little from each other, which indicates the production of quasisteady 
conditions. The current passing ~hrough is greater than I, by 0.84% here. The computing time 
for this version was 7 min on a BESM-6. The computational grid had 20 nodes along the radius 



t,'.&O 

J ___L; ...... ~ 

~  

. , j  - 

g 
f 

- ' I  

- 5 '  

2 

I I I 

- 2  

0,9 

0,9 

t , :6 ,0  
"~" 9 

0 " 1 ~  , " 

/ 

-2_  

2-- 

f 
! 

~ '  ~ ' 4  ; ,  

Fig. i 

o i 

f 

= fO, 0 

_p- 

-2 I I I 

o ~ ~ ~ '  ~ '  ~'~ 
Fig. 2 

and i00 nodes along the length. A total of 400 steps in the time were made. The number of 
particles in the drift space at time 10R/c was equal to 1727. 

�9 The ratio max Irot El/max IE/RI at various times was calculated in this version. It 
varied within the range from 1.2 to 5.8, which indicates that the non-potential part of the 
electric field is of the very same order of masnltude as in the field itself. Consequently, 
taking electromasnetic effects into account is necessary for the correct solution of the 
problem. 

5. Let us consider a tubular beam in a chamber of variable cross section. It was as- 
sumed in these calculations that the chamber radius varies in a stepwise fashion. As an 
example, let us consider the calculation of the motion of the beam in the drift space illus- 
trated in Fig. 3. The beam radius is r b = 0.2R, and the injection velocity is ve = 0.9c. 
The injected current was selected in such a way that it was subcritlcal I = 0.911 in the 
smaller section and suparcrltical I = 1.51~ in the larger one. Here I, and I, are the criti- 
cal currents for the small and large sections of the chamber. The phase planes (z, p) at 
different times for this calculation are given in Fig. 4. The vertical line on the graphs 
denotes the position of the discontinuity in the cross section of the chamber. It is evident 
from Fig. 4 that the beam passes freely through the chamber with the smaller radius and starts 
to be reflected in the resion having the larger cross section at the point z = 1.7R. The 
reflected part of the beam tosether with the injected beam produces a charge in the resion 
having the smaller cross section which is sufficient for reflection in this section. There- 
fore the virtual cathode is shifted as time passes into the resion having the smaller cross 
section, approaching z = 0.3R. 

6. Let us discuss opposed beams in a cylindrical chamber. The phase pattern corre- 
sponding to injection into the drift chamber of two Indantical opposed beams is given in Fig. 
5. The current of each of the beams is (2/3)I,, so that the total volume charEe corresponds 
to a current of (4/3)I, (L = 5R, r b = 0.4R, Ve = 0.9c). Therefore, particle reflection is 
observed in the system. The calculation has shown that charge accumulation occurs slowly, 
and particle reflection starts only at the time t - 13E/c. Then the pattern on the phase 
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plane becomes quasisteady, Starting from t = 17R/c, it changes hardly at all (the calcula- 
tion was performed out to the time t = 25R/c). 

A similar calculation for small injection currents (I < 0.51,) shows that both beams 
pass through the chamber without reflection in this cased as should be e~ected, We note 
that the particle motion in the chamber proves to be stable. 

As was already stated above, one can use several tubular beams embedded one within the 
other to simulate a beam with the current distributed over the cross section. The calcula- 
tions are performed with eight beams embedded one within the other. The surface density of 
the injection current was taken to be identical in all the beams Jk = Jo (k = i, ,.., 8) in 
order to produce a current density uniform over the cross section. The beams were located 
in the first eight radial nodes from the axis. This calculation showed that reflection 
occurs more strongly in the inner beams than in the outer one and the part of the beam which 
reaches the collector has in fact a tubular cross section. 

It is evident from the examples given that the algorithm of [7] offers the possibility 
of investigating rather complicated combinations of drift space and beam arrangement~ 
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TRANSVERSE OSCILLATIONS IN A PARTIALLY COMPENSATED ELECTRON BEAM 

A. S. Chikhachev UDC 533.9 

Discussion of the motion of not only electrons but also ions of a beam is significant in 
connection with the investigation of the problem of the stability of a quasisteady quaslrela- 
tivistic beam. Instabilities of a beam partially compensated with respect to deflection (in- 
stabilities of the "snake" type) are discussed in [I]. A model of two filaments formed by 
electrons and ions of a beam which can shift relative to each other was used. The structure 
of the beams in phase space is not important for the problems investigated in [i] --the trans- 
verse oscillations are analyzed from the motion of axial particles. 

The stability of an electron-lon beam relative to axisymmetric perturbations of the radii 
of the electron and ion components is discussed in this paper. We will assume that both the 
electrons and the ions of the beam are characterized by a nonzero emlttance. 

i. It is necessary in connection with the description of the beam particles with the 
help of a distribution function in the nonsteady case to find an integral of the motion which 
is not a consequence of the uniformity of the system, which is possible in the paraxlal ap- 
proximation [2, 3]. 

We will seek the electron distribution function in the form 

L = • -- 4~) 6(~ -- ~o), (1.1) 

where x is a normalization constant; B z = Vz/C; v z, longitudinal velocity of the electrons; 
c, speed of light; and I, a functional which depends on the transverse coordinates and veloc- 
ities. 

Satsifaction of the condition J << 78omc3/e, where J is the total current of the beam, 
e and m are the charge and mass of the electron, and V is a relativistic factor, is necessary 
for the validity of (i.i). The quantity 8 z is an approximate integral of the motion which 
is a consequence of conservation of the z-component of the generalized momentum. 

One can represent the function I in the case of an axisymmetric beam under discussion in 
the form 

[( I =  A,(t) ~--Aerl  CX'] * L~e r 2, (1.2) 
2Ae] -~- r2J --Ae(t) 
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